General Anesthetics Inhibit Erythropoietin Induction under Hypoxic Conditions in the Mouse Brain

نویسندگان

  • Tomoharu Tanaka
  • Shinichi Kai
  • Tomohiro Koyama
  • Hiroki Daijo
  • Takehiko Adachi
  • Kazuhiko Fukuda
  • Kiichi Hirota
چکیده

BACKGROUND Erythropoietin (EPO), originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS). EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF)-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. METHODOLOGY/PRINCIPAL FINDINGS BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations (0.10-1.0%). Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2α protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2α protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2α protein and EPO mRNA. CONCLUSIONS/SIGNIFICANCE Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 29: Effects of Different Doses of Some GABAergic Agents in Mouse Brain Under Hypoxic State: Possible Role in Neuro-Inflammation

Introduction: Pro-inflammatory chemokines and cytokines   such as MCP-1 and IL6 can activate microglial cells that has found in some neuro-inflammatory disorders. Hypoxia activates cerebral endothelial cells to release these pro-inflammatory mediators. We aimed to investigate the anti-hypoxic effects of different doses of some GABAergic agents. Materials and Methods: We randomly divid...

متن کامل

P 9: Neuoprotective Effect of Cannabinoid CB1 Receptor Antagonists Rimonabant and AM251 on Hypoxic Mouse Model of Brain Oxidative Stress

Introduction: The hypoxic state, in which experimental animals were subjected to an atmosphere of 5% O2 and %95 N2, has been used to screen agents for possible cerebral protection by measuring their ability to prolong survival time in mice exposed to hypoxia. Researchers showed that rimonabant and AM251 allosteric potentiate all but the β1 subunit containing GABAA receptors at nM...

متن کامل

Radiosensitizing effects of gemcitabine on aerobic and chronically hypoxic HeLa and MRC5 cells in-vitro

Background: Gemcitabine (2′, 2′-difluoro-2′- deoxycytidine, an analogue of deoxycytidine) is a relatively new drug with wide range of anti-cancer activity. In this study, radiosensitizing effects of gemcitabine was investigated on HeLa and MRC5 human originated cell lines under both chronically hypoxic and normoxic conditions using the micronucleus (MN) assay. Materials and Methods: F...

متن کامل

The effect of 8 weeks of repetitive speed training in hypoxia and normoxia on erythropoietin and aerobic performance of athletes.

Introduction: Due to the changes that exercise brings to the body in hypoxic conditions, today hypoxic exercise is one of the most common types of exercise among most athletes, coaches and sports professionals to improve performance at sea level (1). In this regard, various types of hypoxia exercises, such as speed training in hypoxia, have recently been considered. Hypoxia exercises are usuall...

متن کامل

[Brain and spinal cord preconditioning for the protection against ischemic injury].

Recent studies have suggested that the brain preconditioning could induce tolerance to ischemia in humans. It has been believed that newly synthesized proteins are required for the acquisition of delayed tolerance in the brain and spinal cord. However, the mechanism other than the synthesis of neuroprotective proteins may also play a pivotal role. Preconditioning may reprogram the response to i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011